Visual Synthetic Data Generation for Sign Language Recognition

نویسندگان

  • Ahmed Ibrahim
  • Rasha Kashef
چکیده

One of the essential steps in pattern recognition is having a training set that contains diversity of exemplars. This step is a major obstacle in sign language recognition. The availability of large public corpus with diversity of examples is limited due to the large number of degrees of freedom inherent in sign language hand gestures and the major variances between different signers. This causes difficulties in collecting a large number of exemplars for each hand gesture and makes it either expensive or impractical. This paper attempts to address this challenge by using hand motion carried out by synthetic 3D animated models. The experiments examine how the recognition accuracy will be changed when the training set is enlarged. The results demonstrate how the recognition accuracy has been improved even when the expressing ability of the classifier is limited. Moreover, it enhances the quality of training set by including a signer independent manner

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Visual Modeling and Feature Adaptation in Sign Language Recognition

We propose a tracking adaptation to recover from early tracking errors in sign language recognition by optimizing the obtained tracking paths w.r.t. the hypothesized word sequences of an automatic sign language recognition system. Hand or head tracking is usually only optimized according to a tracking criterion. As a consequence, methods which depend on accurate detection and tracking of body p...

متن کامل

MAN-MACHINE INTERACTION SYSTEM FOR SUBJECT INDEPENDENT SIGN LANGUAGE RECOGNITION USING FUZZY HIDDEN MARKOV MODEL

Sign language recognition has spawned more and more interest in human–computer interaction society. The major challenge that SLR recognition faces now is developing methods that will scale well with increasing vocabulary size with a limited set of training data for the signer independent application. The automatic SLR based on hidden Markov models (HMMs) is very sensitive to gesture's shape inf...

متن کامل

Applying mean shift and motion detection approaches to hand tracking in sign language

Hand gesture recognition is very important to communicate in sign language. In this paper, an effective object tracking and hand gesture recognition method is proposed. This method is combination of two well-known approaches, the mean shift and the motion detection algorithm. The mean shift algorithm can track objects based on the color, then when hand passes the face occlusion happens. Several...

متن کامل

Static Gesture Quantization and DCT Based Sign Language Generation

To collect data for sign language recognition is not a trivial task. The lack of training data has become a bottleneck in the research of singer independence and large vocabulary recognition. A novel sign language generation algorithm is introduced in this paper. The difference between signers is analyzed briefly and a criterion is introduced to distinguish the same gesture words of different s...

متن کامل

Sign Language Recognition: State of the Art

Sign language is used by deaf and hard hearing people to exchange information between their own community and with other people. Computer recognition of sign language deals from sign gesture acquisition and continues till text/speech generation. Sign gestures can be classified as static and dynamic. However static gesture recognition is simpler than dynamic gesture recognition but both recognit...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013